
Tutorial Prático: React do Básico ao
Intermediário (Vite + VS Code)
Neste tutorial, vamos construir passo a passo uma pequena aplicação React, do básico ao início do
intermediário, usando Visual Studio Code e Vite. Veremos: JSX, componentes funcionais, props,
estado com useState , eventos, renderização condicional, listas e keys, formulários controlados
e useEffect — sempre com exemplos práticos, onde colocar cada código no projeto Vite, comandos
de terminal e a saída esperada no navegador.

1. Introdução — Criando o Projeto React com Vite

O React é uma biblioteca JavaScript para construir UIs baseadas em componentes: blocos reutilizáveis
com sua própria lógica e aparência. O React é eficiente ao atualizar o DOM usando um DOM virtual
(atualiza só o que mudou).

Usaremos o Vite para criar e rodar o projeto — é rápido e simples. Pré‑requisito: Node.js
(recomendado v18+).

Passo a passo

1) Criar o projeto (terminal aberto na pasta desejada):

npm create vite@latest

Siga o prompt: - Project name: (ex.: react-app) - Select a framework: react - Select a variant:
javascript

Dica: em um comando só:
npm create vite@latest my-react-app -- --template react

2) Instalar dependências e abrir o projeto

cd reactapp # (ou o nome que você escolheu)

npm install

code . # opcional: abre a pasta no VS Code

3) Iniciar o servidor de desenvolvimento

npm run dev

Acesse http://localhost:5173 . Você verá a página inicial do Vite/React.

1

Estrutura inicial gerada:

/

├─ index.html
└─ src/
 ├─ main.jsx # ponto de entrada do React DOM
 ├─ App.jsx # componente raiz
 └─ assets/ # (pasta de assets)

Hot reload: deixe npm run dev rodando; ao salvar arquivos no VS Code, o navegador
atualiza automaticamente.

2. JSX e Renderização Básica

JSX é uma sintaxe parecida com HTML dentro do JavaScript. Ele vira chamadas JS reais (ex.:
React.createElement), por isso: - Feche todas as tags corretamente. - Atributos seguem

camelCase (ex.: className , htmlFor , onClick). - Um componente deve retornar um único
elemento pai (use uma <div> ou <>...</>). - Use { ... } para expressões JS dentro do JSX
(variáveis, funções, operações, etc.).

Exemplo — renderização simples com JSX

Arquivo: src/App.jsx

function App() {

const nome = 'Mundo';

return <h1>Olá, {nome}!</h1>;

}

export default App;

Salve e veja "Olá, Mundo!" no navegador.

3. Componentes Funcionais e Props

Um componente funcional é uma função JS que retorna JSX. Props são dados passados do pai para o
filho.

Exemplo — componente de saudação com props

Organização: crie uma pasta components dentro de src/ .

Arquivo: src/components/Saudacao.jsx

2

function Saudacao(props) {

return <h2>Olá, {props.nome}!</h2>;

}

export default Saudacao;

Usando em App.jsx :

import Saudacao from './components/Saudacao';

function App() {

return (

<div>

<Saudacao nome="Alice" />

<Saudacao nome="Bruno" />

</div>

);

}

export default App;

Boas práticas com componentes/props - Um arquivo por componente (PascalCase). -
Responsabilidade única. - Props são somente leitura (não modifique em filhos). - Tipos de props
podem ser strings, números, booleanos, funções, objetos, elementos, etc.

4. Estado e o Hook useState

Estado é a “memória interna” do componente. Em funções, usamos Hooks: const [valor,

setValor] = useState(valorInicial) .

Exemplo — Contador (cliques)

Arquivo: src/components/Contador.jsx

import { useState } from 'react';

function Contador() {

const [numero, setNumero] = useState(0);

return (

<div>

<p>Você clicou {numero} vezes.</p>

<button onClick={() => setNumero(n => n + 1)}>Incrementar</button>

</div>

);

}

3

export default Contador;

Usando em App.jsx :

import Contador from './components/Contador';

function App() {

return (

<div>

<Contador />

</div>

);

}

export default App;

Dicas sobre estado: nunca faça numero++ diretamente; use sempre
setNumero(...) . Atualizações podem ser agrupadas/assíncronas.

5. Manipulação de Eventos

Eventos em JSX usam camelCase e você passa funções (não strings): onClick={minhaFuncao} .

Exemplo curto:

<button onClick={() => alert('Você clicou no botão!')}>

Clique para ver o alerta

</button>

Para submit de formulário, use event.preventDefault() para evitar recarregar a página.

6. Renderização Condicional

Formas comuns: - if/else antes do return (múltiplos return s). - Ternário: {cond ? <A/> :
} . - AND lógico: {cond && <A/>} (cuidado com 0 /string vazia).

Exemplo — PainelLogin

Arquivo: src/components/PainelLogin.jsx

import { useState } from 'react';

function PainelLogin() {

4

const [logado, setLogado] = useState(false);

return (

<div>

{logado ? <p>Bem-vindo de volta!</p> : <p>Por favor, faça login.</p>}

<button onClick={() => setLogado(v => !v)}>

{logado ? 'Logout' : 'Login'}

</button>

</div>

);

}

export default PainelLogin;

Usando em App.jsx :

import PainelLogin from './components/PainelLogin';

function App() {

return (

<div>

<PainelLogin />

</div>

);

}

export default App;

7. Listas e Keys

Para renderizar listas, use array.map(...) e sempre defina key única por item.

Arquivo: src/App.jsx (exemplo simples)

import { useState } from 'react';

function App() {

const [tarefas, setTarefas] = useState([

{ id: 1, texto: 'Estudar React' },

{ id: 2, texto: 'Ler a documentação' }

]);

return (

<div>

<h2>Lista de Tarefas</h2>

{tarefas.map(t => (

5

<li key={t.id}>{t.texto}

))}

</div>

);

}

export default App;

Use um id estável vindo dos dados. Evite index do array ou Math.random() .

8. Comunicação entre Componentes (Filho → Pai)

Fluxo de dados é top‑down. Para o filho “avisar” o pai, o pai passa uma função via props (callback) e o
filho a chama.

Exemplo — remover item da lista

Arquivo: src/components/TaskItem.jsx

function TaskItem({ tarefa, onRemover }) {

return (

{tarefa.texto}

{' '}

<button onClick={() => onRemover(tarefa.id)}>Remover</button>

);

}

export default TaskItem;

Atualize src/App.jsx :

import { useState } from 'react';

import TaskItem from './components/TaskItem';

function App() {

const [tarefas, setTarefas] = useState([

{ id: 1, texto: 'Estudar React' },

{ id: 2, texto: 'Ler a documentação' }

]);

const removerTarefa = (id) => {

setTarefas(ts => ts.filter(t => t.id !== id));

};

6

return (

<div>

<h2>Lista de Tarefas</h2>

{tarefas.map(t => (

<TaskItem key={t.id} tarefa={t} onRemover={removerTarefa} />

))}

</div>

);

}

export default App;

Resumo: Pai → Filho = props; Filho → Pai = função via props. Irmãos compartilham estado “elevado”
no pai comum.

9. Formulários Controlados

Em React, preferimos inputs controlados: o valor exibido vem do estado e atualizamos com
onChange .

Atualize src/App.jsx para adicionar tarefas:

import { useState } from 'react';

import TaskItem from './components/TaskItem';

function App() {

const [tarefas, setTarefas] = useState([

{ id: 1, texto: 'Estudar React' },

{ id: 2, texto: 'Ler a documentação' }

]);

const [novaTarefa, setNovaTarefa] = useState('');

const removerTarefa = (id) => {

setTarefas(ts => ts.filter(t => t.id !== id));

};

const adicionarTarefa = (e) => {

e.preventDefault();

if (novaTarefa.trim() === '') return;

const nova = { id: Date.now(), texto: novaTarefa.trim() };

setTarefas(ts => [...ts, nova]);

setNovaTarefa('');

};

return (

<div>

7

<h2>Lista de Tarefas</h2>

{/* Formulário controlado */}

<form onSubmit={adicionarTarefa}>

<input

type="text"

value={novaTarefa}

onChange={(e) => setNovaTarefa(e.target.value)}

placeholder="Nova tarefa"

/>

<button type="submit">Adicionar</button>

</form>

{tarefas.map(t => (

<TaskItem key={t.id} tarefa={t} onRemover={removerTarefa} />

))}

</div>

);

}

export default App;

Resumo do fluxo controlado: usuário digita → onChange atualiza estado → componente re-
renderiza com o novo value . No submit → usamos o estado atual para adicionar a tarefa.

10. Introdução ao useEffect

useEffect lida com efeitos colaterais (APIs, timers, atualizar título, logs etc.).

Assinatura:

useEffect(() => {

// efeito

return () => { /* limpeza (opcional) */ };

}, [dependencias]);

Sem array: roda após toda renderização.
[] vazio: roda uma vez (montagem).
[foo, bar] : roda ao montar e quando foo ou bar mudam.

Exemplo — boas‑vindas e título dinâmico

Arquivo: src/App.jsx (com lista de tarefas)

•
•
•

8

import { useState, useEffect } from 'react';

import TaskItem from './components/TaskItem';

function App() {

const [tarefas, setTarefas] = useState([

{ id: 1, texto: 'Estudar React' },

{ id: 2, texto: 'Ler a documentação' }

]);

const [novaTarefa, setNovaTarefa] = useState('');

useEffect(() => {

console.log('Aplicação iniciada! Bem-vindo.');

}, []);

useEffect(() => {

document.title = `Tarefas: ${tarefas.length}`;

}, [tarefas]);

// ... (mesmo JSX da seção de formulários)

}

Exemplo de limpeza:

useEffect(() => {

const id = setInterval(() => {

// ...

}, 1000);

return () => clearInterval(id);

}, []);

Boas práticas: - Liste corretamente as dependências usadas no efeito. - Separe efeitos por
responsabilidade. - Evite loops de renderização ao atualizar estado dentro do próprio efeito. - Faça
cleanup de timers, listeners e conexões.

Conclusão e Próximos Passos

Você criou uma app de tarefas com: JSX, componentes, props, useState , eventos, renderização
condicional, listas/keys, comunicação filho→pai, formulário controlado e useEffect .

Sugestões para continuar: - Estilização: CSS, CSS Modules, Styled‑Components, Tailwind. - Testes: Jest
+ React Testing Library. - TypeScript: use o template react-ts do Vite. - Performance:
React.memo , useMemo , useCallback , React.lazy / Suspense , listas virtuais

(react-window). - APIs: fetch /Axios em useEffect para carregar/persistir dados. - Deploy:
npm run build e hospede (Netlify, Vercel, GitHub Pages, etc.).

Boas codificações!

9

	Tutorial Prático: React do Básico ao Intermediário (Vite + VS Code)
	1. Introdução — Criando o Projeto React com Vite
	Passo a passo

	2. JSX e Renderização Básica
	Exemplo — renderização simples com JSX

	3. Componentes Funcionais e Props
	Exemplo — componente de saudação com props

	4. Estado e o Hook useState
	Exemplo — Contador (cliques)

	5. Manipulação de Eventos
	6. Renderização Condicional
	Exemplo — PainelLogin

	7. Listas e Keys
	8. Comunicação entre Componentes (Filho → Pai)
	Exemplo — remover item da lista

	9. Formulários Controlados
	10. Introdução ao useEffect
	Exemplo — boas‑vindas e título dinâmico

	Conclusão e Próximos Passos

