Tutorial Pratico: React do Basico ao
Intermediario (Vite + VS Code)

Neste tutorial, vamos construir passo a passo uma pequena aplicacdo React, do bdsico ao inicio do
intermediario, usando Visual Studio Code e Vite. Veremos: JSX, componentes funcionais, props,
estado com useState , eventos, renderizagdo condicional, listas e keys, formulérios controlados
e useEffect — sempre com exemplos praticos, onde colocar cada cédigo no projeto Vite, comandos
de terminal e a saida esperada no navegador.

1. Introducdao — Criando o Projeto React com Vite

O React é uma biblioteca JavaScript para construir UIs baseadas em componentes: blocos reutilizaveis
com sua proépria légica e aparéncia. O React é eficiente ao atualizar o DOM usando um DOM virtual
(atualiza s6 o que mudou).

Usaremos o Vite para criar e rodar o projeto — é rapido e simples. Pré-requisito: Node.js
(recomendado v18+).

Passo a passo

1) Criar o projeto (terminal aberto na pasta desejada):

npm create vite@latest

Siga o prompt: - Project name: (ex.: react-app) - Select a framework: | react - Select a variant:
javascript

Dica: em um comando sé:
npm create vite@latest my-react-app -- --template react

2) Instalar dependéncias e abrir o projeto

cd reactapp # (ou o nome que vocé escolheu)
npm install
code . # opcional: abre a pasta no VS Code

3) Iniciar o servidor de desenvolvimento

npm run dev

Acesse http://localhost:5173 | Vocé verd a pagina inicial do Vite/React.

Estrutura inicial gerada:

/

- index.html

L src/
- main.jsx # ponto de entrada do React DOM
|— App. jsx # componente raiz
- assets/ # (pasta de assets)

Hot reload: deixe npm run dev rodando; ao salvar arquivos no VS Code, o navegador
atualiza automaticamente.

2. JSX e Renderizacao Basica

JSX é uma sintaxe parecida com HTML dentro do JavaScript. Ele vira chamadas JS reais (ex.:

React.createElement), por isso: - Feche todas as tags corretamente. - Atributos seguem
camelCase (ex.: className | htmlFor , onClick). - Um componente deve retornar um uUnico
elemento pai (use uma <div> ou <>...</>).-Use { ... } para expressodes JS dentro do JSX

(variaveis, func¢des, operacdes, etc.).

Exemplo — renderizagcao simples com JSX

Arquivo: | src/App.jsx

function App() {
const nome = 'Mundo';
return <h1>014, {nome}!</h1>;

export default App;

Salve e veja "0Ola, Mundo!" no navegador.

3. Componentes Funcionais e Props

Um componente funcional é uma funcdo JS que retorna JSX. Props sdo dados passados do pai para o
filho.

Exemplo — componente de saudacdao com props

Organizagao: crie uma pasta components dentrode | src/ .

Arquivo: src/components/Saudacao.jsx

function Saudacao(props) {
return <h2>01a, {props.nome}!</h2>;

export default Saudacao;

Usando em App.jsx

import Saudacao from './components/Saudacao';

function App() {
return (
<div>
<Saudacao nome="Alice" />
<Saudacao nome="Bruno" />
</div>

),

export default App;

Boas praticas com componentes/props - Um arquivo por componente (PascalCase). -
Responsabilidade Unica. - Props sao somente leitura (ndo modifique em filhos). - Tipos de props
podem ser strings, nimeros, booleanos, fun¢des, objetos, elementos, etc.

4. Estado e o Hook useState

Estado é a “memodria interna” do componente. Em fun¢des, usamos Hooks: const [valor,
setValor] = useState(valorInicial) .

Exemplo — Contador (cliques)

Arquivo: src/components/Contador. jsx

import { useState } from 'react’;

function Contador() {
const [numero, setNumero] = useState(0);

return (
<div>
<p>Vocé clicou {numero} vezes.</p>
<button onClick={() => setNumero(n => n + 1)}>Incrementar</button>
</div>

),

export default Contador;

Usando em App.jsx:

import Contador from './components/Contador';
function App() {
return (
<div>
<Contador />
</div>

)

export default App;

Dicas sobre estado: nunca faca numero++ diretamente; use sempre
setNumero(...) . Atualizac6es podem ser agrupadas/assincronas.

5. Manipulacao de Eventos

Eventos em JSX usam camelCase e vocé passa fun¢des (ndo strings): onClick={minhaFuncao} .

Exemplo curto:

<button onClick={() => alert('Vocé clicou no botdo!"')}>
Clique para ver o alerta
</button>

Para submit de formulario, use | event.preventDefault() para evitar recarregar a pagina.

6. Renderizacao Condicional

Formas comuns: - if/else antes do return (multiplos return s). - Ternario: {cond ? <A/>
} .- AND légico: {cond && <A/>} (cuidado com 0 /string vazia).

Exemplo — Painellogin

Arquivo: src/components/PainellLogin. jsx

import { useState } from 'react’;

function Painellogin() {

const [logado, setLogado] = useState(false);

return (
<div>
{logado ? <p>Bem-vindo de volta!</p> : <p>Por favor, faca login.</p>}
<pbutton onClick={() => setlLogado(v => !v)}>
{logado ? 'Logout' : 'Login'}
</button>
</div>

),

export default Painellogin;

Usando em App.jsx:

import PainellLogin from './components/Painellogin';
function App() {
return (
<div>
<PainellLogin />
</div>

),

export default App;

7. Listas e Keys

Para renderizar listas, use array.map(...) e sempre defina key Unica por item.

Arquivo: | src/App.jsx (exemplo simples)

import { useState } from 'react’;

function App() {
const [tarefas, setTarefas] = useState([
{ id: 1, texto: 'Estudar React' },
{ id: 2, texto: 'Ler a documentagao' }

IDF

return (
<div>
<h2>Lista de Tarefas</h2>

{tarefas.map(t => (

<li key={t.id}>{t.texto}</1li>
N}

</div>

),

export default App;

Use um id estavel vindo dos dados. Evite index |do array ou Math.random() .

8. Comunicagao entre Componentes (Filho — Pai)

Fluxo de dados é top-down. Para o filho “avisar” o pai, o pai passa uma fungao via props (callback) e o
filho a chama

Exemplo — remover item da lista

Arquivo: src/components/TaskItem.jsx

function TaskItem({ tarefa, onRemover }) {
return (

{tarefa.texto}
{" "}
<pbutton onClick={() => onRemover(tarefa.id)}>Remover</button>
</1i>

)

export default TaskItem;

Atualize src/App.jsx:

import { useState } from 'react’;
import TaskItem from './components/TaskItem';

function App() {
const [tarefas, setTarefas] = useState([
{ id: 1, texto: 'Estudar React' },
{ id: 2, texto: 'Ler a documentacdo' }

DK
const removerTarefa = (id) => {

setTarefas(ts => ts.filter(t => t.id !== id));
}

return (
<div>
<h2>Lista de Tarefas</h2>

{tarefas.map(t => (
<TaskItem key={t.id} tarefa={t} onRemover={removerTarefa} />
)}

</div>

),

export default App;

”

Resumo: Pai — Filho = props; Filho — Pai = fung¢ao via props. Irmaos compartilham estado “elevado
no pai comum.

9. Formularios Controlados

Em React, preferimos inputs controlados: o valor exibido vem do estado e atualizamos com
onChange .

Atualize src/App.jsx | para adicionar tarefas:

import { useState } from 'react’';
import TaskItem from './components/TaskItem';

function App() {
const [tarefas, setTarefas] = useState([
{ id: 1, texto: 'Estudar React' },
{ id: 2, texto: 'Ler a documentacao' }

DK
const [novaTarefa, setNovaTarefa] = useState('');

const removerTarefa = (id) => {
setTarefas(ts => ts.filter(t => t.id !== id));
}

const adicionarTarefa = (e) => {
e.preventDefault();
if (novaTarefa.trim() === "'') return;
const nova = { id: Date.now(), texto: novaTarefa.trim() };
setTarefas(ts => [...ts, noval);
setNovaTarefa('');

return (
<div>

<h2>Lista de Tarefas</h2>

{/* Formuldrio controlado */}
<form onSubmit={adicionarTarefa}>
<input
type="text"
value={novaTarefa}
onChange={(e) => setNovaTarefa(e.target.value)}
placeholder="Nova tarefa"
/>
<button type="submit">Adicionar</button>
</form>

{tarefas.map(t => (
<TaskItem key={t.id} tarefa={t} onRemover={removerTarefa} />

N}

</div>
),

export default App;

Resumo do fluxo controlado: usuario digita — |onChange | atualiza estado — componente re-
renderiza com o novo | value | No submit = usamos o estado atual para adicionar a tarefa.

10. Introducao ao useEffect

useEffect lida com efeitos colaterais (APIs, timers, atualizar titulo, logs etc.).

Assinatura:

useEffect(() => {

// efeito

return () => { /* limpeza (opcional) */ };
}, [dependencias]);

« Sem array: roda apds toda renderizacdo.
* [] vazio: roda uma vez (montagem).
« [foo, bar] :rodaao montar e quando foo ou|bar |mudam.

Exemplo — boas-vindas e titulo dindmico

Arquivo: src/App.jsx (com lista de tarefas)

import { useState, useEffect } from 'react';
import TaskItem from './components/TaskItem';

function App() {
const [tarefas, setTarefas] = useState([
{ id: 1, texto: 'Estudar React' },
{ id: 2, texto: 'Ler a documentacdo' }

IDE
const [novaTarefa, setNovaTarefa] = useState('');

useEffect(() => {
console.log('Aplicacgdo iniciada! Bem-vindo.');
o0

useEffect(() => {
document.title = "Tarefas: ${tarefas.length}’;
}, [tarefas]);

// ... (mesmo JSX da secdo de formularios)

Exemplo de limpeza:

useEffect(() => {
const id = setInterval(() => {
//
}, 1000);
return () => clearInterval(id);

o[

Boas praticas: - Liste corretamente as dependé&ncias usadas no efeito. - Separe efeitos por
responsabilidade. - Evite loops de renderizacdo ao atualizar estado dentro do préprio efeito. - Faga
cleanup de timers, listeners e conexdes.

Conclusao e Préoximos Passos

Vocé criou uma app de tarefas com: JSX, componentes, props, (useState , eventos, renderizagao
condicional, listas/keys, comunicacao filho—pai, formulario controlado e | useEffect .

Sugestdes para continuar: - Estilizagcdo: CSS, CSS Modules, Styled-Components, Tailwind. - Testes: Jest
+ React Testing Library. - TypeScript: use o template |react-ts do Vite. - Performance:
React.memo | useMemo |, useCallback |, React.lazy / Suspense | listas virtuais
(react-window). - APIs: fetch /Axios em useEffect | para carregar/persistir dados. - Deploy:
npm run build e hospede (Netlify, Vercel, GitHub Pages, etc.).

Boas codificacoes!

	Tutorial Prático: React do Básico ao Intermediário (Vite + VS Code)
	1. Introdução — Criando o Projeto React com Vite
	Passo a passo

	2. JSX e Renderização Básica
	Exemplo — renderização simples com JSX

	3. Componentes Funcionais e Props
	Exemplo — componente de saudação com props

	4. Estado e o Hook useState
	Exemplo — Contador (cliques)

	5. Manipulação de Eventos
	6. Renderização Condicional
	Exemplo — PainelLogin

	7. Listas e Keys
	8. Comunicação entre Componentes (Filho → Pai)
	Exemplo — remover item da lista

	9. Formulários Controlados
	10. Introdução ao useEffect
	Exemplo — boas‑vindas e título dinâmico

	Conclusão e Próximos Passos

